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In this paper we describe a biological inspired approach 
to robot attention, developed on the basis of several 
experiments mapping human gaze search onto robot 
behaviours, as described in previous works (see 
Belardinelli et al., 2005, 2006). In particular in this 
paper we show how a gaze search process can be defined 
as a Markov random process weighetd with utility 
functions. The role of utilities is to account for the 
optimization of the visual endeavours. 
Visual attention has been intensively investigated in last 
decades in order to understand how humans orient their 
gaze. Strategies employed in visual attention account for 
the ability in human vision to detect interesting spots in 
the visual field. When observing a scene the ability to 
focus immediately on salient regions is crucial in many 
search or surveillance tasks and furthermore it clearly 
speeds up object recognition. 
The human skill of selective attention deployment has 
been deeply researched in order to determine which 
mechanisms allow us to capture meaningful details at a 
glance, without needing to process whole regions of the 
visible scene. The model that gained most credit in the 
past years is due to Treisman (Treisman and Gelade, 
1980), according to whose theory focused attention is 
driven by perception of several separable features, such 
as intensity, color, shape, edge orientations, and 
conjunctions of features. Therefore mechanisms for 
feature extraction and recombination have been 
implemented in artificial systems as well, according to 
computational models for the control of bottom-up 
attention such as the construction of saliency maps (Itti 
and Koch, 2001; Niebur et al., 2001). 

Gaze orienting is fundamental in guiding spatial 
attention in visual search tasks. During observation of a 
scene, attention moves through a sequence of gaze shifts 
and fixations. While shifting the fovea, visual 
information is not processed, being rather filtered out 
until a fixation occurs, allowing to focus on a salient 
location selected in the previous fixation. This 
phenomenon is known as change blindness and it 
accounts for the lack of change detection during eye 
movements while observing images or real world scenes 
(Simons and Levin, 1997; Rensink et al., 2000). In these 
moments focused attention is not applied and therefore 
our mind cannot build a coherent and detailed 
representation of the world, tending instead to assemble 
a kind of sampled representation of perceptually relevant 
locations and features. Similarly, fast translational or 
rotational movements of cameras mounted on robot 
heads can be left out in the processing, since 
corresponding frames result to be blurred and therefore 
they cannot deliver meaningful information. We focused 
thus on fixations and researched underlying mechanisms 
in order to infer a model of attention that could be 
implemented on a robotic platform. Only in recent years 
studies in the field of Cognitive Sciences began to 
investigate whether depth could play a role as a further 
feature in projecting gaze shifts and fixations in a three-
dimensional space. Theeuwes et al. (1998) reported that 
grouping mechanisms help segregating contiguous 
objects, focusing attention on a subset of the visible 
elements. In particular they showed that attention can 
select a particular depth plane determined by binocular 
disparity, even if other relevant features on different 
planes can act as distractors if identical to the target 
ones. Furthermore, several authors (among them, 
Maringelli et al., 2001; Couyoumdjian et al., 2003) 
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suggested that different spatial representations are used 
for near and far space and relative information is 
probably processed separately, since near space is more 
related to motor tasks while far space is mainly 
perceptual. Evidence of such a different representation is 
a greater reaction time obtained when shifting the fovea 
from peripersonal space ( about 1 m) to extrapersonal 
space. This performance decrease could be justified by 
both a cognitive effort and an ocular effort. More 
specifically, Previc (1998) proposes four behavioural 
realms: peripersonal, focal extrapersonal, action extra-
personal and ambient extra-personal. 
The third one is the only one that can shift between near 
and distal space along with foveation and its function is 
mainly devoted to searching and recognizing objects and 
visual targets. The latter task, particularly, requires 
attentional resources and visual memory. 
Depth as source of visual attention has been 
computationally modelled by Ouerhani et Hügli (2000), 
who integrated it as ulterior feature in the construction of 
the saliency map. Frintrop et al. (2004) applied visual 
attention to range images in order to perform efficient 
object recognition. 
In this paper we present an experiment based on the 
above mentioned considerations. Our goal was to find 
out scanning strategies in task-driven attention. This 
achievement shall lead to automatic generation of likely 
scanning paths in terms of a sequence of rotation angles 
efficiently performable by a pan-tilt unit, on which a 
stereo camera is mounted. 
Allegedly visual search progresses aggregating 
contiguous objects in terms of each of the three 
dimensions and passes from a clique to another 
minimizing the overall effort and maximizing utility 
according to the task. Once recorded visual data from the 
subject point of view and the pan and tilt angles of his 
head, performed during fixations, we computed velocity 
of gaze shifts and paths between fixations on a mosaic 
scene. Further we have mapped these shifts onto a  
Markov random process which is weighted by utility 
functions. Thus transitions denote optimized gaze shifts. 
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